AskDefine | Define bicycle

Dictionary Definition

bicycle n : a wheeled vehicle that has two wheels and is moved by foot pedals [syn: bike, wheel, cycle] v : ride a bicycle [syn: cycle, bike, pedal, wheel]

User Contributed Dictionary



Often said to be from French, but probably coined from bi- ("two") + Greek κύκλος ("circle", "wheel") on the pattern of tricycle.



  1. A vehicle that has two wheels, one behind the other, a steering handle, and a saddle seat or seats and is usually propelled by the action of a rider’s feet upon pedals.
  2. A traveling block used on a cable in skidding logs.
  3. The best possible hand in lowball.





  1. To travel or exercise using a bicycle.

Extensive Definition

The bicycle, cycle or bike, is a pedal-driven, human-powered vehicle with two wheels attached to a frame, one behind the other.
First introduced in 19th-century Europe, bicycles now number approximately one billion worldwide, providing the principal means of transportation in many regions. They also provide a popular form of recreation, and have been adapted for use in many other fields of human activity, including children's toys, adult fitness, military and police applications, courier services, and cycle sports.
The basic shape and configuration of a typical bicycle has hardly changed since the first chain-driven model was developed around 1885, although many important details have been improved, especially since the advent of modern materials and computer-aided design. These have allowed for a proliferation of specialized designs for particular types of cycling.
The bicycle has had a considerable effect on human society, in both the cultural and industrial realms. In its early years, bicycle construction drew on pre-existing technologies; more recently, bicycle technology has, in turn, contributed both to old and new areas.


Several innovators contributed to the history of the bicycle by developing precursor human-powered vehicles. The documented ancestors of today's modern bicycle were known as push bikes, Draisines or hobby horses. To use the Draisine, first introduced to the public in Paris by the German Baron Karl von Drais in 1818, the operator sat astride a wooden frame supported by two in-line wheels and pushed the vehicle along with his/her feet while steering the front wheel.
In the early 1860s, Frenchmen Pierre Michaux and Pierre Lallement took bicycle design in a new direction by adding a mechanical crank drive with pedals on an enlarged front wheel. Several why-not-the-rear-wheel inventions followed, the best known being the rod-driven velocipede by Scotsman Thomas McCall in 1869. The French creation, wrought of iron and wood, developed into the "penny-farthing" (more formally an ordinary bicycle), featuring a tubular steel frame on which were mounted wire spoked wheels with solid rubber tires. These bicycles were not, however, for the faint hearted, due to the very high seat and poor weight distribution.
The subsequent dwarf ordinary addressed some of these faults by reducing the front wheel diameter and setting the seat further back, necessitating the addition of gearing, effected in a variety of ways, to attain sufficient speed. However, having to both pedal and steer via the front wheel remained a problem. Starley's nephew, J. K. Starley, J. H. Lawson, and Shergold solved this problem by introducing the chain drive connecting the pedals held with the frame to the back wheel. These models were known as dwarf safeties, or safety bicycles, for their lower seat height and better weight distribution. Starley's 1885 Rover is usually described as the first recognizably modern bicycle. Soon, the seat tube was added, creating the double-triangle diamond frame of the modern bike.
New innovations increased comfort, and ushered in a second bicycle craze, the 1890s' Golden Age of Bicycles. In 1888, Scotsman John Boyd Dunlop introduced the pneumatic tire, which soon became universal. Soon after, the rear freewheel was developed, enabling the rider to coast. This refinement led to the 1898 invention of coaster brakes. Derailleur gears and hand-operated cable-pull brakes were also developed during these years, but were only slowly adopted by casual riders. By the turn of the century, cycling clubs flourished on both sides of the Atlantic, and touring and racing were soon extremely popular.
Bicycles and horse buggies were the two mainstays of private transportation just prior to the automobile, and the grading of smooth roads in the late 19th century was stimulated by the wide use of these devices.

Uses for bicycles

Bicycles have been and are employed for many uses: Cycling has many health benefits and does not directly contribute to global warming or environmental pollution.

Technical aspects

Since the first bicycle, many important details have been improved, especially with the advent of modern materials and computer-aided design. These have allowed for a proliferation of specialized bicycle types.

Types of bicycle

Bicycles can be categorized in different ways: e.g. by function, by number of riders, by general construction, by gearing or by means of propulsion. The more common types include utility bicycles, mountain bicycles, racing bicycles, touring bicycles, cruiser bicycles, and BMX bicycles. Less common are tandems, lowriders, tall bikes, fixed gear, folding models and recumbents (one of which was used to set the IHPVA Hour record).
Unicycles, tricycles and quadracycles are not strictly bicycles, as they have respectively one, three and four wheels, but are often referred to informally as "bikes".


A bicycle stays upright by being steered so as to keep its center of gravity over its wheels. This steering is usually provided by the rider, but under certain conditions may be provided by the bicycle itself.
A bicycle must lean in order to turn. This lean is induced by a method known as countersteering, which can be performed by the rider turning the handlebars directly with the hands or indirectly by leaning the bicycle.
Short-wheelbase or tall bicycles, when braking, can generate enough stopping force at the front wheel in order to flip longitudinally. This action, especially if performed on purpose, is known as a stoppie, endo or front wheelie.


In both biological and mechanical terms, the bicycle is extraordinarily efficient. In terms of the amount of energy a person must expend to travel a given distance, investigators have calculated it to be the most efficient self-powered means of transportation. From a mechanical viewpoint, up to 99% of the energy delivered by the rider into the pedals is transmitted to the wheels, although the use of gearing mechanisms may reduce this by 10-15%. In terms of the ratio of cargo weight a bicycle can carry to total weight, it is also a most efficient means of cargo transportation.
A human being traveling on a bicycle at low to medium speeds of around 10-15 mph (15-25 km/h), using only the energy required to walk, is the most energy-efficient means of transport generally available. Air drag, which is proportional to the square of speed, requires dramatically higher power outputs as speeds increase. A bicycle which places the rider in a seated position, supine position or, more rarely, prone position, and which may be covered in an aerodynamic fairing to achieve very low air drag, is referred to as a recumbent bicycle or human powered vehicle. On an upright bicycle, the rider's body creates about 75% of the total drag of the bicycle/rider combination.
In addition, the carbon dioxide generated in the production and transportation of the food required by the bicyclist, per mile traveled, is less than 1/10th that generated by energy efficient cars.

Construction and parts

In its early years, bicycle construction drew on pre-existing technologies; more recently, bicycle technology has, in turn, contributed ideas in both old and new areas.


The great majority of today's bicycles have a frame with upright seating which looks much like the first chain-driven bike. Such upright bicycles almost always feature the diamond frame, a truss consisting of two triangles: the front triangle and the rear triangle. The front triangle consists of the head tube, top tube, down tube and seat tube. The head tube contains the headset, the set of bearings that allows the fork to turn smoothly for steering and balance. The top tube connects the head tube to the seat tube at the top, and the down tube connects the head tube to the bottom bracket. The rear triangle consists of the seat tube and paired chain stays and seat stays. The chain stays run parallel to the chain, connecting the bottom bracket to the rear dropouts. The seat stays connect the top of the seat tube (at or near the same point as the top tube) to the rear dropouts.
Historically, women's bicycle frames had a top tube that connected in the middle of the seat tube instead of the top, resulting in a lower standover height at the expense of compromised structural integrity, since this places a strong bending load in the seat tube, and bicycle frame members are typically weak in bending. This design, referred to as a step-through frame, allows the rider to mount and dismount in a dignified way while wearing a skirt or dress. While some women's bicycles continue to use this frame style, there is also a variation, the mixte, which splits the top tube into two small top tubes that bypass the seat tube and connect to the rear dropouts. The ease of stepping through is also appreciated by those with limited flexibility or other joint problems. Because of its persistent image as a "women's" bicycle, step-through frames are not common for larger builds.
A more recent development is the recumbent bicycle. These are inherently more aerodynamic than upright versions, as the rider may lean back onto a support and operate pedals that are on about the same level as the seat. The world's fastest bicycle is a recumbent bicycle but this type was banned from competition in 1934 by the Union Cycliste Internationale
Historically, materials used in bicycles have followed a similar pattern as in aircraft, the goal being high strength and low weight. Since the late 1930s alloy steels have been used for frame and fork tubes in higher quality machines. Celluloid found application in mudguards, and aluminum alloys are increasingly used in components such as handlebars, seat post, and brake levers. In the 1980s aluminum alloy frames became popular, and their affordability now makes them common. More expensive carbon fiber and titanium frames are now also available, as well as advanced steel alloys and even bamboo.


Since cyclists' legs are most efficient over a narrow range of cadences, a variable gear ratio is helpful to maintain an optimum pedalling speed while covering varied terrain.
The drivetrain begins with pedals which rotate the crank arms, which are held in axis by the bottom bracket. On a bicycle with shaft drive, a gear set at the bottom bracket turns the shaft, which then turns the rear wheel via a gear set connected to the wheel's hub. The rear hub may provide several different gear ratios.
On a bicycle with chain drive, a crank arm may have one or more chainrings or sprockets attached. A chainring drives the chain, which in turn rotates the rear wheel via the rear sprockets (cassette or freewheel). A gearing system is used to vary the number of rear wheel revolutions produced by each turn of the pedals.
When the bicycle chain shifts to a larger rear sprocket, or to a smaller front sprocket (a lower gear) every turn of the pedal leads to fewer rotations in the freewheel (and hence the rear wheel). This allows the force required to move the same distance to be distributed over more pedal cycles, reducing fatigue when riding uphill, with a heavy load, or against strong winds. The reverse process allows the cyclist to make fewer pedal cycles to maintain a higher speed, but with more effort per cycle.
Road bicycles have close set multi-step gearing, which allows fine control of cadence, while utility bicycles offer fewer, more widely spaced speeds. Mountain bikes, touring bikes and many entry-level racing bicycles offer an extremely low gear to facilitate climbing slowly on steep hills. Single-speed bicycles have only one gear.

Steering and seating

The handlebars turn the fork and the front wheel via the stem, which rotates within the headset. Three styles of handlebar are common. Upright handlebars, the norm in Europe and elsewhere until the 1970s, curve gently back toward the rider, offering a natural grip and comfortable upright position. Drop handlebars are "dropped", offering the cyclist either an aerodynamic "crouched" position or a more upright posture in which the hands grip the brake lever mounts. Mountain bikes feature a straight handlebar which can provide better low-speed handling due to the wider nature of the bars.
Saddles also vary with rider preference, from the cushioned ones favored by short-distance riders to narrower saddles which allow more room for leg swings. Comfort depends on riding position. With comfort bikes and hybrids the cyclist sits high over the seat, their weight directed down onto the saddle, such that a wider and more cushioned saddle is preferable. For racing bikes where the rider is bent over, weight is more evenly distributed between the handlebars and saddle, and the hips are flexed, and a narrower and harder saddle is more efficient. Differing saddle designs exist for male and female cyclists, accommodating the genders' differing anatomies, although bikes typically are sold with saddles most appropriate for males.
A recumbent bicycle has a reclined chair-like seat that some riders find more comfortable than a saddle, especially riders who suffer from certain types of seat, back, neck, shoulder, or wrist pain. Recumbent bicycles may have either under-seat or over-seat steering.


Modern bicycle brakes are either rim brakes, in which friction pads are compressed against the wheel rims, internal hub brakes, in which the friction pads are contained within the wheel hubs, or disc brakes. Disc brakes are common on off-road bicycles, tandems and recumbent bicycles, but are considered impractical on road bicycles, which rarely encounter conditions where the advantages of discs are significant. Hub drum brakes do not cope well with extended braking, so rim or disc brakes are favored in hilly terrain.
With hand-operated brakes, force is applied to brake levers mounted on the handlebars and transmitted via Bowden cables or hydraulic lines to the friction pads. A rear hub brake may be either hand-operated or pedal-actuated, as in the back pedal coaster brakes which were popular in North America until the 1960s, and are still common in children's bicycles.
Track bicycles do not have brakes. Brakes are not required for riding on a track because all riders ride in the same direction around a track which does not necessitate sharp deceleration. Track riders are still able to slow down because all track bicycles are fixed-gear, meaning that there is no freewheel. Without a freewheel, coasting is impossible, so when the rear wheel is moving, the crank is moving. To slow down one may apply resistance to the pedals. While it is illegal in most jurisdictions to cycle on roads without brakes, a fixed-gear bike without brakes can be slowed by skidding the rear wheel. This involves unweighting the rear wheel and applying a backwards force to the pedals, causing the rear wheel to lock up and slide along the road. Most track bike frames and forks do not have holes for mounting brakes, although with their increasing popularity among some road cyclists, some manufacturers have designed their track frames to enable the fitting of brakes.


Bicycle suspension refers to the system or systems used to suspend the rider and all or part of the bicycle. This serves two purposes:
  • To keep the wheels in continuous contact with rough surfaces in order to improve control.
  • To isolate the rider and luggage from jarring due to rough surfaces.
Bicycle suspensions are used primarily on mountain bicycles, but are also common on hybrid bicycles, and can even be found on some road bicycles, as they can help deal with problematic vibration. Suspension is especially important on recumbent bicycles, since while an upright bicycle rider can stand on the pedals to achieve some of the benefits of suspension, a recumbent rider cannot.


A bicycle wheel is almost always built up from a hub, rim, and spokes, and fitted with rubber pneumatic tires.
Spokes are steel or stainless steel, and can be replaced if broken. Hubs and rims can be aluminum or steel, but steel wheels are becoming rare in most countries. Aluminum rims are lighter and give much better braking in wet conditions. Typically they are anodized except for the braking surfaces. With disc brakes, the whole rim can be anodized, usually in black or silver. Wheels may also be cast or molded in one piece from aluminum alloy, plastic, and carbon fiber for various specialty bikes; plastic, for example, was once favored for BMX bikes.
The wheel axle fits into dropouts in the frame and forks. A pair of wheels may be called a wheelset, especially in the context of ready-built "off the shelf", performance-oriented wheels.
Tires vary enormously. Skinny, road-racing tires may be completely smooth, or (slick). On the opposite extreme, off-road tires are wider and thicker, and usually have a deep tread for gripping in muddy conditions.

Accessories, repairs, and tools

Some components, which are often optional accessories on sports bicycles, are standard features on utility bicycles to enhance their usefulness and comfort. Mudguards, or fenders, protect the cyclist and moving parts from spray when riding through wet areas and chainguards protect clothes from oil on the chain. Kick stands keep a bicycle upright when parked. Front-mounted baskets for carrying goods are often used. Luggage carriers and panniers can be used to carry equipment or cargo. Parents sometimes add rear-mounted child seats and/or an auxiliary saddle fitted to the crossbar to transport children.
Toe-clips and toestraps and clipless pedals help to keep the foot planted firmly in the proper position on the pedals, and enable the cyclist to pull as well as push the pedals. Technical accessories include cyclocomputers for measuring speed and distance. Other accessories include lights, reflectors, security lock, mirror, water bottles and cages, and bell.
Bicycle helmets may help reduce injury in the event of a collision or accident, and a certified helmet is legally required for some riders in some jurisdictions. Helmets are classified as an accessory
Many cyclists carry tool kits. These may include a tire patch kit (which, in turn, may contain any combination of a tire pump or CO2 cartridges, tire levers, spare tubes, self-adhesive patches, or tube-patching material, an adhesive, a piece of sandpaper or a metal grater to clean off a section of the tube, and sometimes even a block of French chalk.), wrenches, hex keys, screwdrivers, and a chain tool. There are also cycling specific multi-tools that combine many of these implements into a single compact device. More specialized bicycle components may require more complex tools, including proprietary tools specific for a given manufacturer.
Some bicycle parts, particularly hub-based gearing systems, are complex, and many cyclists prefer to leave maintenance and repairs to professional bicycle mechanics. In some areas it is possible to purchase road-side assistance from companies such as the Better World Club. Other cyclists maintain their own bicycles, perhaps as part of their enjoyment of the hobby of cycling or simply for economic reasons.


A number of formal and industry standards exist for bicycle components, to help make spare parts exchangeable:
  • ISO 5775 Bicycle tire and rim designations
  • ISO 8090 Cycles—Terminology (same as BS 6102-4)
  • ISO 4210 Cycles—Safety requirements for bicycles


For details on specific bicycle parts, see list of bicycle parts and :category:bicycle parts.

Social and historical aspects

The bicycle has had a considerable effect on human society, in both the cultural and industrial realms.

Bicycles in daily life

Around the turn of the 20th century, bicycles helped reduce crowding in inner-city tenements by allowing workers to commute from more spacious dwellings in the suburbs. They also reduced dependence on horses, with all the knock-on effects this brought to society. Bicycles allowed people to travel for leisure into the country, since bicycles were three times as energy efficient as walking, and three to four times as fast. Recently, several European cities have implemented successful schemes, known as Community bicycle programs or bike-sharing schemes. These initiatives are designed to complement a city's public transport system and offer an alternative to motorized traffic to help reduce congestion and pollution. Users can take a bicycle at a parking station, use it for a limited amount of time, and then return it to the same, or a different, station. Examples of such schemes are Bicing in Barcelona, Vélo'v in Lyon and Vélib' in Paris.
In cities where the bicycle is not an integral part of the planned transportation system, commuters often use bicycles as elements of a mixed-mode commute, where the bike is used to travel to and from train stations or other forms of rapid transit. Folding bicycles are useful in these scenarios, as they are less cumbersome when carried aboard.
Until recently, bicycles have been a staple of everyday life in the People's Republic of China. They are the most frequently used method of transport for commuting to work, school, shopping, and life in general. As a result bicycles there are almost always equipped with baskets and back seats.

Female emancipation

The diamond-frame safety bicycle gave women unprecedented mobility, contributing to their emancipation in Western nations. As bicycles became safer and cheaper, more women had access to the personal freedom they embodied, and so the bicycle came to symbolize the New Woman of the late nineteenth century, especially in Britain and the United States.
The bicycle was recognized by nineteenth-century feminists and suffragists as a "freedom machine" for women. American Susan B. Anthony said in a New York World interview on February 2 1896: "Let me tell you what I think of bicycling. I think it has done more to emancipate women than anything else in the world. It gives women a feeling of freedom and self-reliance. I stand and rejoice every time I see a woman ride by on a wheel...the picture of free, untrammeled womanhood." In 1895 Frances Willard, the tightly-laced president of the Women’s Christian Temperance Union, wrote a book called How I Learned to Ride the Bicycle, in which she praised the bicycle she learned to ride late in life, and which she named "Gladys", for its "gladdening effect" on her health and political optimism. Willard used a cycling metaphor to urge other suffragists to action, proclaiming, "I would not waste my life in friction when it could be turned into momentum."
Male anger at the freedom symbolized by the New (bicycling) Woman was demonstrated when the male undergraduates of Cambridge University showed their opposition to the admission of women as full members of the university by hanging a woman bicyclist in effigy in the main town square. This was as late as 1897. The bicycle craze in the 1890s also led to a movement for so-called rational dress, which helped liberate women from corsets and ankle-length skirts and other restrictive garments, substituting the then-shocking bloomers.

Economic implications

Bicycle manufacturing proved to be a training ground for other industries and led to the development of advanced metalworking techniques, both for the frames themselves and for special components such as ball bearings, washers, and sprockets. These techniques later enabled skilled metalworkers and mechanics to develop the components used in early automobiles and aircraft. J. K. Starley's company became the Rover Cycle Company Ltd. in the late 1890s, and then simply the Rover Company when it started making cars. The Morris Motor Company (in Oxford) and Škoda also began in the bicycle business, as did the Wright Brothers. Alistair Craig whose company eventually emerged to become the engine manufacturers Ailsa Craig also started from manufacturing bicycles in Glasgow in March 1885.
In general, U.S. and European cycle manufacturers used to assemble cycles from their own frames and components made by other companies, although very large companies (such as Raleigh) used to make almost every part of a bicycle (including bottom brackets, axles, etc.) In recent years, those bicycle makers have greatly changed their methods of production. Now, almost none of them produce their own frames.
Many newer or smaller companies only design and market their products; the actual production is done by Asian companies. For example, some sixty percent of the world's bicycles are now being made in China. Despite this shift in production, as nations such as China and India become more wealthy, their own use of bicycles has declined due to the increasing affordability of cars and motorcycles. One of the major reasons for the proliferation of Chinese-made bicycles in foreign markets is the lower cost of labour in China.

Legal requirements

The 1968 Vienna Convention on Road Traffic of the United Nations considers a bicycle to be a vehicle, and a person controlling a bicycle is considered a driver. The traffic codes of many countries reflect these definitions and demand that a bicycle satisfy certain legal requirements, sometimes even including licensing, before it can be used on public roads. In many jurisdictions it is an offence to use a bicycle that is not in roadworthy condition.
In most jurisdictions, bicycles must have functioning front and rear lights when ridden after dark. As some generator or dynamo-driven lamps only operate while moving, rear reflectors are frequently also mandatory. Since a moving bicycle makes little noise, some countries insist that bicycles have a warning bell for use when approaching pedestrians, equestrians and other bicyclists.

See also



  • All About Bicycling, Rand McNally.
  • Richard Ballantine, Richard's Bicycle Book, Pan, 1975.
  • Caunter C. F. The History and Development of Cycles Science Museum London 1972.
  • Daniel Kirshner. Some nonexplanations of bicycle stability. American Journal of Physics, 48(1), 1980. The abstract reads "In this paper we attempt to verify a nongyroscopic theory of bicycle stability, and fail".
  • David B. Perry, Bike Cult: the Ultimate Guide to Human-powered Vehicles, Four Walls Eight Windows, 1995.
  • Roni Sarig, The Everything Bicycle Book, Adams Media Corporation, 1997
  • US Department of Transportation, Federal Highway Administration. "America's Highways 1776-1976", pp. 42-43. Washington, DC, US Government Printing Office.
  • David Gordon Wilson, Bicycling Science, MIT press, ISBN 0-262-73154-1
  • David V. Herlihy, Bicycle: The History, Yale University Press, 2004
  • Frank Berto, The Dancing Chain: History and Development of the Dérailleur Bicycle, San Francisco: Van der Plas Publications, 2005, ISBN 1-892495-41-4.
  • The Data Book: 100 Years of Bicycle Component and Accessory Design, San Francisco: Van der Plas Publications, 2005, ISBN 1-892495-01-5.

External links

bicycle in Afrikaans: Fiets
bicycle in Arabic: دراجة
bicycle in Aragonese: Bezicleta
bicycle in Asturian: Bicicleta
bicycle in Belarusian (Tarashkevitsa): Ровар
bicycle in Bosnian: Bicikl
bicycle in Bulgarian: Велосипед
bicycle in Catalan: Bicicleta
bicycle in Czech: Jízdní kolo
bicycle in Welsh: Beic
bicycle in Danish: Cykel
bicycle in Pennsylvania German: Beik
bicycle in German: Fahrrad
bicycle in Estonian: Jalgratas
bicycle in Modern Greek (1453-): Ποδήλατο
bicycle in Spanish: Bicicleta
bicycle in Esperanto: Biciklo
bicycle in Basque: Txirrindu
bicycle in Persian: دوچرخه
bicycle in French: Bicyclette
bicycle in Irish: Rothar
bicycle in Scottish Gaelic: Rothair
bicycle in Galician: Bicicleta
bicycle in Korean: 자전거
bicycle in Hindi: सायकिल
bicycle in Croatian: Bicikl
bicycle in Ido: Biciklo
bicycle in Indonesian: Sepeda
bicycle in Icelandic: Reiðhjól
bicycle in Italian: Bicicletta
bicycle in Hebrew: אופניים
bicycle in Javanese: Pit
bicycle in Kazakh: Велосипед
bicycle in Latin: Birota
bicycle in Latvian: Velosipēds
bicycle in Lithuanian: Dviratis
bicycle in Hungarian: Kerékpár
bicycle in Malay (macrolanguage): Basikal
bicycle in Dutch: Fiets
bicycle in Dutch Low Saxon: Fietse
bicycle in Japanese: 自転車
bicycle in Norwegian: Sykkel
bicycle in Norwegian Nynorsk: Sykkel
bicycle in Narom: Bike
bicycle in Uzbek: Velosiped
bicycle in Polish: Rower
bicycle in Portuguese: Bicicleta
bicycle in Romanian: Bicicletă
bicycle in Quechua: Iskaymuyu
bicycle in Russian: Велосипед
bicycle in Simple English: Bicycle
bicycle in Slovak: Bicykel
bicycle in Slovenian: Dvokolo
bicycle in Serbian: Бицикл
bicycle in Sundanese: Sapédah
bicycle in Finnish: Polkupyörä
bicycle in Swedish: Cykel
bicycle in Tamil: மிதிவண்டி
bicycle in Thai: จักรยาน
bicycle in Vietnamese: Xe đạp
bicycle in Turkish: Bisiklet
bicycle in Ukrainian: Велосипед
bicycle in Wu Chinese: 自行車
bicycle in Yiddish: ביציקל
bicycle in Contenese: 單車
bicycle in Samogitian: Dvėratis
bicycle in Chinese: 自行車

Synonyms, Antonyms and Related Words

bike, bus, catch a train, chauffeur, chopper, cycle, drive, entrain, go by rail, iron, joyride, make a train, minibike, motocycle, motor, motorbike, motorcycle, pedal, pedicab, pig, ride, road-bike, take a joyride, taxi, trail bike, tricycle, trike, two-wheeler, velocipede, wheel
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1